
 
 
 
 
 
 
 
 
 
 

CHAPTER 3 
 

ARRAY THEORY 
 
 
 
 

An antenna Array is a configuration of individual radiating elements that are arranged in 

space and can be used to produce a directional radiation pattern. Single-element antennas have 

radiation patterns that are broad and hence have a low directivity that is not suitable for long 

distance communications. A high directivity can be still be achieved with single-element 

antennas by increasing the electrical dimensions (in terms of wavelength) and hence the physical 

size of the antenna. Antenna arrays come in various geometrical configurations, the most 

common being; linear arrays (1D). Arrays usually employ identical antenna elements. The 

radiating pattern of the array depends on the configuration, the distance between the elements, 

the amplitude and phase excitation of the elements, and also the radiation pattern of individual 

elements.  

 
3.1 Some Antenna parameter definitions 

 
It is worthwhile to have a brief understanding of some of the antenna parameters before 

discussing antenna arrays in detail. Some of the parameters discussed in [2] are explained below.  

 
3.1.1 Radiation Power density  

 
Radiation Power density rW  gives a measure of the average power radiated by the 

antenna in a particular direction and is obtained by time-averaging the Poynting vector. 
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where, E is the electric field intensity; H is the magnetic field intensity, andη is the intrinsic 

impedance 

 
3.1.2 Radiation Intensity 

 
Radiation intensity U  in a given direction is the power radiated by the antenna per unit 

solid angle. It is given by the product of the radiation density and the square of the distance r . 

 
(Watts/unit solid angle)                            (3.2) 
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3.1.3 Total power radiated 

 
 The total power radiated  by the antenna in all the directions is given by, totP

φθθφθ
π π

∫ ∫=
2

0 0

2 )sin(),,( ddrrWP rtot             (3.3)  

         (Watts)            (3.4) φθθφθ
π π

∫ ∫=
2

0 0

)sin(),( ddU

 
3.1.4 Directivity 

 
The Directive gain , is the ratio of the radiation intensity in a given direction to the 

radiation intensity in all the directions. i.e. 
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The Directivity is the maximum value of the directive gain for a given direction. i.e. 0D gD
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where ),(max φθU is the maximum radiation intensity. 

 
3.1.5 Radiation Pattern 

 
The Radiation pattern of an antenna can be defined as the variation in field intensity as a 

function of position or angle. Let us consider an anisotropic radiator, which has stronger 

radiation in one direction than in another. The radiation pattern of an anisotropic radiator shown 

below in figure 3.1 consists of several lobes. One of the lobes has the strongest radiation 

intensity compared to other lobes. It is referred to as the Major lobe. All the other lobes with 

weaker intensity are called Minor Lobes. The width of the main beam is quantified by the Half 

Power Beamwidth (HPBW), which is the angular separation of the beam between half-power 

points. 

 

 

 
 

Figure 3.1 Radiation Pattern 
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3.2 Linear Array Analysis 

 
When an antenna array has elements arranged in a straight line it is known as a linear 

array [2]. Let us consider a linear array with two elements shown in figure 3.2. The elements are 

placed on either sides of the origin at a distance 2
d  from it. 
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Figure 3.2 A

 
 
 
 
 The electric field radiated b

of the following form.  

Electric field at P due to element 1: 
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Electric field at P due to element 2: 
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Where: 

w1, w2 are the weights; 

f1, f2 are the normalized field patterns for each antenna element; 

r1, r2 are the distances of element 1 and element 2 from the observation point P; 

β is the phase difference between the feed of the two array elements; 

 
To make the far field approximation the above figure can be re-drawn as shown below in figure 

3.3. The point P is in the far field region. 
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Figure 3.3 Far-field geometry of a two-element linear array 

 
 
 
 
Following approximations can be drawn from the above diagram: 
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Since the array elements are identical we can assume the following: 

 
 ( ) ( ) ( )φθφθφθ ,,, 222111 FFF ==          (3.9) 

 
The total field E at point P is the vector sum of the fields radiated by the individual elements and 

can we illustrated as follows: 
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For uniform weighting, 
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 The above relation as often referred to as pattern multiplication which indicates 

that the total field of the array is equal to the product of the field due to the single element 

located at the origin and a factor called array factor, AF. i.e. 

 
 (total) = [E(single element at reference point)] × [array factor]    (3.14) 

 
Note: The pattern multiplication rule only applies for an array consisting of identical elements. 
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The normalized array factor for the above two-element array can be written as follows: 
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Therefore from the above discussion it is evident that the AF depends on: 

1. The number of elements 

2. The geometrical arrangement 

3. The relative excitation magnitudes 

4. The relative phases between elements 

 
3.3 Uniform Linear Array 

 
 Based on the simple illustration of a two-element linear array let us extend the 

analysis to a N-element uniform linear array [2].  A uniform array consists of equispaced 

elements, which are fed with current of equal magnitude (i.e. with uniform weighting) and can 

have progressive phase-shift along the array. 
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Figure 3.4 Far-field geometry of N-element array of isotropic elements along z-axis 
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  The uniform linear array shown in the figure 3.4 consists of N elements equally spaced at 

distance d apart with identical amplitude excitation and has a progressive phase difference of β 

between the successive elements. Let us assume that the individual radiating elements are point 

sources with the first element of the array at the origin. The phase of the wave arriving at the 

origin is set to zero. Again point P is assumed to be in the far field region. 

 
The AF of an N-element linear array of isotropic sources is: 
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The above equation can be re-written as: 
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where βθψ += coskd . Therefore by varying β the array factor of the array can be controlled. 

The above AF relation can be expressed in a closed form, which is more convenient for pattern 

analysis, 
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In the above analysis the term 
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For small values of ψ  the above equation can be reduced to: 
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The maximum value of the array factors is N. Therefore their normalized form can be 

written as follows: 
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3.3.1 Nulls and Maxima of the Array Factor 

 
In order to find the nulls of the AF, the above AF equation 3.26 is set to zero. The 

analysis to find the angles nθ  at which the nulls occur is as follows: 
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There are no existing nulls when ,...3,2, NNNn = , as the argument of the arccosine exceeds 

unity. 

 
The angles mθ at which the maxima occurs can be obtained when 
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If 
λ
d is chosen to be sufficiently small the AF in equation (3.26) has only one maximum 

and it occurs when m=0 in equation 3.29. i.e., 
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3.3.2 Half Power Beamwidth (HPBW)(for the major lobe) 

 
In order to compute the HPBW in addition to the angle of first maximum mθ , the half-power 

point hθ is also required. The half-power point hθ  can be calculated by setting the value of in 

equation (3.26) to 0.707. i.e. 

nAF
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Now the HPBW can be calculated as: 
 

hmHPBW θθ −= 2          (3.33) 
 

Note: The HPBW equation provided here is only for non-steered arrays.  
 

3.3.3 Broadside Array 

 
An array is referred to as a broadside array when it has a maximum radiation in the 

direction perpendicular to that of axis of the array i.e. when 90=θ as shown in figure 3.5. From 

the equation (3.29) the maximum of the array factor would occur when 

 
  0cos =+= βθψ kd  (for m = 0)       (3.34) 

 
If 90=θ then, 

 
0=⇒ β  

Therefore a uniform linear array will have maximum radiation in the broadside direction 

when all the array elements will have same phase excitation.  
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Figure 3.5 Array factor of a 5-element uniform amplitude broadside array 

 
 
 
 

3.3.4 End-fire Array 

 
An array is referred to as an end-fire array when it has a maximum radiation in the 

direction along the axis of the array i.e. when (as shown in figure 3.6) or . o0=θ o180=θ
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When , o180=θ
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Figure 3.6 Array factor of a 5-element uniform amplitude end-fire array 

 
 
 
 Let us now illustrate the dependence of the uniform linear array factor on various 

parameters including the number of elements and element spacing as a function of 

wavelength

N d

λ . 

 
 The array factor plots shown below indicates that beamwidth inversely 

proportional to the spacing between the elements for same number of elements. The array 

factor plot in figure 3.7 shows that beam width is smaller in the first case when 

d

2λ=d compared to the beamwidth when 4λ=d . 

 
 

2λ=d 4λ=d

Figure 3.7 Linear plots of the Array factor plots for 4λ=d and 2λ=d w
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 The following array factor plots in figure 3.8 shows that the beamwidth is not 

only dependent on the element spacing d  but also on the number of elements . It is quite 

evident from the plots that the beamwidth increases as the number of elements in the array 

increases. Please note that the element spacing is kept constant in both the cases.  
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Figure 3.9 Linear plots of the Array factor plots for 10=N , 2λ=d 20=Nand , 4λ=d  

 
 
 
 

3.4 Phased (scanning) Arrays 

 
 From the above discussion on broadside array and end-fire array it is quite 

obvious that the direction of the radiation for the main beam (m=0) depends on the phase 

difference β between the elements of the array. Therefore it is possible to continuously steer the 

main beam in any direction by varying the progressive phase β between the elements. This type 

of array where the main beam is steered to the desired direction is referred to as a phased array or 

a phase-scanned array.  

 
The array factor for an N-element linear array with uniform spacing is given by, 
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The phase β is adjusted by including a phase factor in the weight associated with 

individual element. 
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If the steering angle desired is 0θ  the phase excitation β must be adjusted such that 

 
When 0θθ = , 
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 0cosθβ kd−=⇒           (3.38) 

The normalized AF of a beam steered array is given as 
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 The figure 3.10 shows a linear and a polar plot, which illustrates the above 

discussion on how the beam is steered to a desired angle 0θ  (in this case ) by using 

normalized AF relation. The following case is for a 20-element array and the elements are spaced 

0
0 40=θ

2
λ apart. 

 

 
Figure 3.10 Linear and polar plots of the array factor when beam is steered to 40 degrees 
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